9,494 research outputs found

    Information and display requirements for aircraft terrain following

    Get PDF
    The display design procedure for manned vehicle systems, is applied and validated, for a particular scenario. The scenario chosen is that of zero visibility high speed terrain following (V = 466 ft/sec, H = 200 ft) with an A-10 aircraft. The longitudal (linearized) dynamics are considered. The variations in (command path over) terrain pi(t) are modeled as a third order random process. The display design methodology is based on the optimal control model of pilot response, and employs this model in various ways in different phases of the design process. The overall methodology indicates that the design process is intended as a precursor to manned simulation. It provides a rank ordering of candidate displays through a three level process

    Modeling the effects of high-G stress on pilots in a tracking task

    Get PDF
    Air-to-air tracking experiments were conducted at the Aerospace Medical Research Laboratories using both fixed and moving base dynamic environment simulators. The obtained data, which includes longitudinal error of a simulated air-to-air tracking task as well as other auxiliary variables, was analyzed using an ensemble averaging method. In conjunction with these experiments, the optimal control model is applied to model a human operator under high-G stress

    Atomic Diffusion and Mixing in Old Stars V: A deeper look into the Globular Cluster NGC 6752

    Full text link
    Abundance trends in heavier elements with evolutionary phase have been shown to exist in the globular cluster NGC 6752 [Fe/H]=-1.6. These trends are a result of atomic diffusion and additional (non-convective) mixing. Studying such trends can provide us with important constraints on the extent to which diffusion modifies the internal structure and surface abundances of solar-type, metal-poor stars. Taking advantage of a larger data sample, we investigate the reality and the size of these abundance trends and address questions and potential biases associated with the various stellar populations that make up NGC6752. Based on uvby Str\"omgren photometry, we are able to separate three stellar populations in NGC 6752 along the evolutionary sequence from the base of the red giant branch down to the turnoff point. We find weak systematic abundance trends with evolutionary phase for Ca, Ti, and Fe which are best explained by stellar-structure models including atomic diffusion with efficient additional mixing. We derive a new value for the initial lithium abundance of NGC 6752 after correcting for the effect of atomic diffusion and additional mixing which falls slightly below the predicted standard BBN value. We find three stellar populations by combining photometric and spectroscopic data of 194 stars in the globular cluster NGC 6752. Abundance trends for groups of elements, differently affected by atomic diffusion and additional mixing, are identified. Although the statistical significance of the individual trends is weak, they all support the notion that atomic diffusion is operational along the evolutionary sequence of NGC 6752.Comment: 15 pages, 11 figures, 2 online table

    Pristine CNO abundances from Magellanic Cloud B stars II. Fast rotators in the LMC cluster NGC 2004

    Full text link
    We present spectroscopic abundance analyses of three main-sequence B stars in the young Large Magellanic Cloud cluster NGC 2004. All three targets have projected rotational velocities around 130 km/s. Techniques are presented that allow the derivation of stellar parameters and chemical abundances in spite of these high v sin i values. Together with previous analyses of stars in this cluster, we find no evidence among the main-sequence stars for effects due to rotational mixing up to v sin i around 130 km/s. Unless the equatorial rotational velocities are significantly larger than the v sin i values, this finding is probably in line with theoretical expectations. NGC 2004/B30, a star of uncertain evolutionary status located in the Blue Hertzsprung Gap, clearly shows signs of mixing in its atmosphere. To verify the effects due to rotational mixing will therefore require homogeneous analysis of statistically significant samples of low-metallicity main-sequence B stars over a wide range of rotational velocities.Comment: 12 pages, 5 figures, 2 tables; accepted for publication in ApJ (vol. 633, p. 899

    Atomic Diffusion and Mixing in Old Stars. III. Analysis of NGC 6397 Stars under New Constraints

    Full text link
    We have previously reported on chemical abundance trends with evolutionary state in the globular cluster NGC 6397 discovered in analyses of spectra taken with FLAMES at the VLT. Here, we reinvestigate the FLAMES-UVES sample of 18 stars, ranging from just above the turnoff point (TOP) to the red giant branch below the bump. Inspired by new calibrations of the infrared flux method, we adopt a set of hotter temperature scales. Chemical abundances are determined for six elements (Li, Mg, Ca, Ti, Cr, and Fe). Signatures of cluster-internal pollution are identified and corrected for in the analysis of Mg. On the modified temperature scales, evolutionary trends in the abundances of Mg and Fe are found to be significant at the 2{\sigma} and 3{\sigma} levels, respectively. The detailed evolution of abundances for all six elements agrees with theoretical isochrones, calculated with effects of atomic diffusion and a weak to moderately strong efficiency of turbulent mixing. The age of these models is compatible with the external determination from the white dwarf cooling sequence. We find that the abundance analysis cannot be reconciled with the strong turbulent-mixing efficiency inferred elsewhere for halo field stars. A weak mixing efficiency reproduces observations best, indicating a diffusion-corrected primordial lithium abundance of log {\epsilon}(Li) = 2.57 +- 0.10. At 1.2{\sigma}, this value agrees well with WMAP-calibrated Big-Bang nucleosynthesis predictions.Comment: 14 pages, 5 figures, accepted by Ap

    Sulphur abundances in metal-poor stars

    Full text link
    We investigate the debated "sulphur discrepancy" found among metal-poor stars of the Galactic halo with [Fe/H] < -2. This discrepancy stems in part from the use of two different sets of sulphur lines, the very weak triplet at 8694-95 A and the stronger triplet lines at 9212 - 9237 A. For three representative cases of metal-poor dwarf, turnoff and subgiant stars, we argue that the abundances from the 8694-95 lines have been overestimated which has led to a continually rising trend of [S/Fe] as metallicity decreases. Given that the near-IR region is subject to CCD fringing, these weak lines become excessively difficult to measure accurately in the metallicity regime of [Fe/H] < -2. Based on homogeneously determined spectroscopic stellar parameters, we also present updated [S/Fe] ratios from the 9212-9237 lines which suggest a plateau-like behaviour similar to that seen for other alpha elements.Comment: accepted by A&A, 4 pages, 3 tables, 1 figure; v2: Table2 updated with metallicities from other work
    corecore